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Abstract 
This paper presents synthesis methods for the de- 

sign of constant-gain positive real controllers for pas- 
sive systems. The results presented in this paper, in 
conjunction with the previous work by the authors on 
passification of non-passive systems, offer a useful syn- 
thesis tool for the design of passivity-based robust con- 
trollers for non-passive systems as well. Two synthesis 
approaches are given for minimizing an LQ-type per- 
formance index, resulting in optimal controller gains. 
Two separate algorithms, one for each of these ap- 
proaches, are given. The synthesis techniques are 
demonstrated using two numerical examples: control 
of a flexible structure and longitudinal control of a 
fighter aircraft. 

Introduction 
Passivity-based controllers have been proved to be 

highly effective in the control of inherently passive sys- 
tems [ J o s . ~ ~ ,  Ke1.961. Recently, it has been shown that 
these controllers can also be used for control of non- 
passive systems as well once such systems are passi- 
fied by techniques introduced in [Ke1.97, Kel.981. The 
main advantage of using such controllers is the sta- 
bility robustness of the closed-loop system. There 
are numerous results available in the literature on the 
passivity-based controllers. However, most of these re- 
sults have focused on the analysis part and not much 
work has been done on the synthesis of such con- 
trollers. The limited results available to date on the 
synthesis of positive-real controllers can be found in 
[Loz.90, Had.94, Saf.871. In [Loz.90] an LQG-based 
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design technique was given whereas in [Had.94] an 
Ha/H,-based design procedure was given. Both of 
these methods used stochastic models and are compu- 
tationally intensive. 

This paper gives two approaches to synthesize 
constant-gain positive-real (PR) controllers. The first 
approach is based on the use of symmetric gain matrix 
whereas the second approach allows a non-symmetric 
gain matrix. In the case of the first approach, the 
necessary conditions are derived by minimization of a 
suitable LQ performance index. A synthesis algorithm 
is derived based on these necessary conditions. For the 
second approach, a modified version of the algorithm 
proposed in [Moe.85] is used. The organization of the 
paper is as follows. First, we present the problem for- 
mulation followed by two separate algorithms to com- 
pute optimal controller gains, and finally, two numer- 
ical examples to demonstrate the synthesis methods. 

Posit ive-Real Optimal Controllers 
This section gives the formulation of optimal con- 

trol problem wherein it is desired to synthesize a 
constant-gain strictly PR (SPR) output feedback con- 
troller for a Linear Time Invariant (LTI) PR system. 
Consider a Positive-Real (PR) LTI system: 

where ~ ( t )  E P, u(t)  E W, y ( t )  E W, and input 
u(t)  is given by the output-feedback control law: 

u = -Gy (G = GT > 0).  (3) 

The plant (1) being PR satisfies the following con- 
straints as a result of Kalman-Yakubovich lemma for 
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some positive definite P = PT E Px", and L E 
p ? l X "  

Assuming z(0) to be a random vector, J in Eq. (13) 
can be replaced by its expected value, and thus Xo in 
Eq. (14) denotes E[z(O)z'(O)]. 

The optimization problem stated above can now (4) 

C = B T P  (5) be re-phrased as follows: 

A ~ P + P A  = - L ~ L  

(15) 
Minimize Let us suppose that it is required to find an asymptot- 

ically stabilizing constant-gain, strictly positive-real 
output feedback controller G for the closed-loop sys- subject to : g E Acl + + 0 = 0 (16) 

where 6 = Q + CTGTRGC. The problem defined tem given by Eqs. (1)-(3) such that the followingper- 

by Eqs.( 15-16) is a constrained minimization problem formance index is minimized. 

which can be further modified into an unconstrained 
minimization problem by using Lagrange multipliers 
and augmented performance function. 

Let S = ST be the Lagrange multiplier with con- 

: J = tr(CX0) 
K ,  C 

T 

J = Lm(zTQz + uTRu)dt (6) 

This is an optimization problem where the perfor- 
mance index (6) is to be minimized subject to the 
constraints (1)-(5). Using control law of Eq. (3) the 
closed-loop system becomes 

sistent dimensions. If Hamiltonian is defined as: 

H = tr(CX0 +gS)  = tr(CXo) 

(7) + tr [A - BKIITCITCS + C [ A  - BII'IPCIS 

(17) 

( x = ( A  - BGC)z.  

The constraint that G is SPR can be imposed by forc- 
ing G to satisfy 1 + QS + C T K K T R K K T C S  

the constrained optimum of Eq. (15) subject to con- 
straint (16) is same as the unconstrained optimum of 
Eq. (17). The necessary conditions for an optimum 
are then given by setting the partial derivatives of H 
with respect to its arguments to zero, i. e., 

8~ 
dS 

G = I{lI'T (8) 

where I{ E ?Vxm has full rank. Substituting Eq. (8) 
in Eq. (7) yields 

k = (A - B K K ~ C ) ~  = 

(6) can be rewritten using Eq. (3) as 

(9) 

where Ael = A-  BII'KTC. The performance function 
- = 0 + g = AelTC + CA,l+ Q = 0 (18) 

+ C ~ I I ' I I ' ~  R K I I ~ C S  Further, it can be shown that 

1 
2 

J = -zT(O)Cz(O). 
+ -[CSTCTB + BTCSCT + BTCTSTCT 

+ CSCB] K + 2[CSCTIIKTR 

+ RK KT CSCT] K = 0 where C satisfies: 

AZC + CAcl + Q + CTKTKRIi'IITC = 0.  ( 1 2 )  + [ C S C ~ I I ' K ~ R  + R I ~ - I I ' ~ C S C ~  - CSCB 

- BT CSCT] K = 0 
d H  E = 0 * x0 + A c ~ S  + S&IT = 0 

For a given IC, R,  and Q this is a Lyapunov equa- 
tion to be solved for C. Now using the trace iden- 
tity, tr(AB)=tr(BA), the performance index J ,  can 
be rewritten as 

J = tr(CX0) 

Note that the equation (18) is just the constraint 
equation, whereas Eqs. (19) and (20) give necessary 

(13) conditions for an optimum. The unconstrained opti- 
where 

xo E z(0)zT(O). 
mum is a local minimum if the Hessian H K K  is posi- 

(14) tive definite. 



The following theorem gives conditions under In [Moe.85], an algorithm was given for solving the 
which the the performance function (15) decreases, standard LQ output feedback problem. It essentially 
and leads to a synthesis algorithm. involves solving two uncoupled Lyapunov equations 
Theorem 1- If C1, Eo, K1, and KO are solutions to at each iteration, and then restricting the step size in 
the following equations the direction of the resulting new value of G to en- 

AeoTCo + CoAco + &o = 0 (21) sure closed-loop stability as well as reduction in J .  
The Lyapunov equations are linear, and therefore the 

(22) computational requirement is quite reasonable. This AclTC1 + C I A c l  + 9 = 0 

Xo + AcoSo + SoAcoT = 0 (23) algorithm can be modified for the design of PR con- 
where: At = A -  BGiC = A - B K ' K i T C  and Qa = trollers, by restricting the step size in the direction of 

new G (at each iteration) to ensure that G+ GT > 0.  
This also ensures closed-loop stability at each itera- if K1 satisfies 

tion. Convergence cannot be guaranteed for this pro- 
CSOC'B - BTCISoCT = 0 (24) cedure because the positivity constraint can drive the 

gain to the boundary. 

(25) Numerical Examples 

-. 

Qi + CTGiTRGiC = Qi + C T K ~ K ~ T R K ~ K ~ T C  and 

CSo CT K1 K I T  R + RK' KIT CS°CT - 

then 
J ( K o )  - J ( K 1 )  2 0. 

provided that A; is Hurwitz for i = 0 , l .  Example 1: Flexible Structure Control 
Proof- The proof is omitted due to space limitations. The first example consists of a flexible space struc- 

Using the necessary conditions (Eqs. 19 and 20) ture with three lightly-damped elastic modes with 
and Theorem 1, a numerical algorithm is presented frequencies (in rad/sec): 1.095, 2.3, and 2.6. The 
below which can be used to synthesize the PR gain corresponding open-loop damping ratios are: 0.0023, 
matrix G. 0.0011, and 0.0019, respectively. Two actuators with 

Synthesis of symmetric PR gain: 
Algorithm 1 

Using Theorem 1, the following iterative algorithm 
can be obtained to compute the gain G. 

Step 1. Choose 11' and solve for Co using equation 

Step 2. Solve for So using equation (23). 
Step 3. Solve for K 1  and C1 simutanously by using 

Step 4. Set 11' = K1, go back to step 1. 
Iterate until convergence is obtained. 
It should be noted that Step 3, which consists of 

solving nonlinear coupled matrix equations, is numer- 
ically quite intensive. 

Synthesis of non-symmetric PR gain: 

(21). 

equations (22) and (24). 

collocated rate sensors are assumed, resulting in a 
weakly strictly positive real (WSPR) plant. An 
LQ performance index given by Eq. (6) is mini- 
mized by assuming the covariance of the initial state 
X, = I ,  and choosing the design variables Q = 
diag [ lo ,  100, 10, 10, 10, 1001, and R = I,,,. 
Results with Algorithm 1: 

Algorithm 1 was first used for designing symmetric 
constant-gain optimal PR controller. The initial gain 
matrix was chosen to be diag[lO, lo]. The initial value 
of J was 6.1398 x lo3. The minimization of J yielded 
an optimum value of J as 2.5276 x lo3. The resulting 
optimal symmetric, positive gain matrix was 

(26) 
37.5665 59.9666 
59.9666 2 14.79 10 

G =  [ 
Algorithm 2 

For robust stabilization of passive systems, G does 
not have to be symmetric, and it suffices to have 
G + GT 2 0.  This condition is less restrictive than 
requiring symmetry, and therefore would generally re- 

The closed-loop eigenvalues of the system are given in 
Table 1. The position response at both sensor loca- 
tions are given in Figs. l and 2 .  It can be seen that 
the closed-loop response dies down within 30 seconds 
in both cases. 

sult in a smaller optimal value of the performance 
function. 

Results with Algorithm 2: 
Algorithm 2, which permits non-symmetric gain 



matrix G, was next applied to the same problem, 
starting with the same initial value of G. The algo- 
rithm converged in 28 iterations, and the final value 
of J was: 2.5124e+03, virtually same as that obtained 
by Algorithm 1. The final optimal value of G was: 

1 31.7064 36.7063 
64.3397 215.8499 

G =  [ 
The closed-loop eigenvalues, as well as the initial con- 
dition responses, were very close to those obtained by 
Algorithm 1. When different starting values of G were 
used, both algorithms converged to nearly the same fi- 
nal values. 

The example shows that both algorithms can ef- 
fectively design an optimal constant-gain positive-real 
controller. 
Example 2: Longitudinal Control System for 
F-18 Fighter Aircraft 

In the second example, linearized longitudinal 
models of an F-18 High-Alpha Research Vehicle 
(HARV) at four different flight conditions are consid- 
ered. The objective is to design a pitch-axis control 
system at  15,000 ft. altitude, and at the following 
combinations of speed and normal acceleration: (1) 
0.7 Mach and lg ,  (2) 0.6 Mach and lg ,  (3) 0.49 Mach 
and lg ,  and (4) 0.3 Mach and 0.37g. The control in- 
put is elevator deflection and the output is the pitch 
rate. This is the same system that was considered 
in [Ke1.97], wherein the plant was first passified using 
a third-order series compensator with poles at -10, 
-.05, and -.0035 and zeros at -1, -0.5, and -0.08. 
This compensator robustly passifies the plant at all 
four flight conditions. 

The presence of the phugoid mode and the cor- 
responding zero causes numerical problems in control 
design algorithms. Therefore, passified short-period 
approximations (of order 5) were used for the purpose 
of controller design. The LQ performance function to 
be minimized has Q = 1 ~ ~ 5  and R = 10. The model 
corresponding to the second flight condition was used 
as the nominal model for controller design. 

Algorithm 1 was first used for designing a constant- 
gain PR controller for minimizing the LQ performance 
index J given by Eq. (6). The initial gain was chosen 
to be 0.1. The initial value of J was 1.09 x lo4.  The 
minimization of J yielded an optimum with value of J 

as 483.3. The resulting gain was found to be 5.3264. 
The closed-loop eigenvalues for the nominal plant are 
given in Table 1. The pitch rate responses for all flight 
conditions are given in Fig. 3. 

Algorithm 2 gave essentially identical results, as 
is expected because the controller gain is a scalar. 
The final compensator consists of the passifier in se- 
ries with the plant and the optimal gain in the feed- 
back path. The responses obtained were notably bet- 
ter than those obtained in [Ke1.97] using LQG-optimal 
dynamic PR controllers of [Loz.SO]. This could be at- 
tributed to the fact that only limited freedom is avail- 
able in choosing the performance function weights in 
the latter case. 
Gain Scheduling: The next step was to design op- 
timal controllers tuned to individual flight conditions. 
In each case, both algorithms converged to essentially 
same optima. The optimal gains for the four flight 
conditions are given in Table 2. The responses using 
individual optimized gains showed a slight improve- 
ment over those obtained using the optimal gain for 
the nominal design model (flight condition 2). If de- 
sired, the gains showed in Table 2 can be used for gain 
scheduling. 
Conclusions 

Synthesis of constant-gain positive-real LQ- 
optimal controllers was investigated for passive LTI 
systems. The controller design technique was demon- 
strated by two numerical examples. The synthesis 
methods presented in this paper, along with the ro- 
bust passification methods proposed in previous pub- 
lications by the authors, offer an effective tool for de- 
signing robust controllers for non-passive systems as 
well. 
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Algorithm 1 

Table 1 : Closed-loop eigenvalues 

Closed-loop Eigenvalues 
Algorithm 2 

Flight Cond. 

Optimal gain (G) 

1 2 3 4 

5.56 5.33 4.33 4.82 
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Figure 1: Open-loop (dashed) and closed-loop (solid) 
response at sensor 1 
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Figure 2: Open-loop (dashed) and closed-loop (solid) 
response at sensor 2 
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Figure 3: Pitch rate response 


